Ricostruzione di mesoni D in collisioni pp a 8 TeV con l'esperimento ALICE a LHC

Susanna Costanza

(Università degli Studi di Pavia & INFN Pavia)
on behalf of the ALICE Collaboration

102° Congresso della Società Italiana di Fisica
Padova, 26-30 settembre 2016

Outline

- Heavy flavour physics in ALICE
- The ALICE detector
- D-meson reconstruction
 - Selection strategy
 - Signal extraction
- Results:
 - \square p_{\top} differential production cross section for D^+ and D^{*+}
- Conclusions

Heavy-flavour physics in ALICE

Why do we study D mesons?

- LHC as a heavy-flavour factory (charm and beauty):
 - large cross section for $c\bar{c}$ and $b\bar{b}$ production: $\sigma_{LHC}^{c\bar{c}} \approx 10\sigma_{RHIC}^{c\bar{c}}$
- Heavy quarks are produced in hard scattering processes in the initial stages
 of the collision → test of pQCD calculations
- Energy dependence of total charm production cross section in pp well reproduced by NLO pQCD-based calculation over more than 3 orders of magnitude → charm production in pp theoretically under control
- In pp collisions,
 - a reference for Pb-Pb collisions
 - Insight in the production mechanism
 - a test for perturbative QCD in a new energy regime

The ALICE detector

To reconstruct D mesons, we need:

- Inner Tracking System (ITS): precision vertex reconstruction, tracking
 Time Projection Chamber (TPC): tracking, particle identification
 - o Time of Flight (TOF): particle identification

D-meson hadronic decays

Channels studied:

```
D^+ \rightarrow K^- \pi^+ \pi^+ [BR (9.13\pm0.19)\%, c\tau \approx 312 \ \mu m] D^{*+} \rightarrow D^0 \pi^+ [BR (67.7\pm0.5)\%] \rightarrow K^- \pi^+ \pi^+ [BR (3.93\pm0.04)\%]
```

- Data sample analysed: pp 2012 data, $\sqrt{s} = 8$ TeV, ~108 events
- D+, D*+ and their antiparticles reconstructed in the central rapidity region from their charged hadronic decay channels
- Displaced decay vertex is signature of heavy-flavour hadron decay → tracking and vertexing precision essential for heavy-flavour analysis

D-meson selection strategy

Same strategy for all D-mesons

- Secondary vertices of D-mesons reconstructed using tracks with:
 - n < 0.8
 - $p_{T} > 0.3' \text{ GeV/c}$
 - at least 70 associated space points in TPC (out of a maximum of 159)
 - $X^2/ndf < 2$ in the TPC
 - at least one associated hit in either of the two innermost layers in ITS (Silicon Pixel Detector, SPD)
- p_{\top} dependent kinematic and topological cuts applied on the final decay products to enhance signal-to-background ratio and maximize significance

- distance of closest approach
- decay length
- Pointing angle
- impact parameter of the decay tracks

- Additional background rejection in the low momentum region through particle identification (PID) in TPC and TOF
- Signal extracted from fits to the invariant mass distributions

D-meson reconstruction

Examples of signal extracted in different p_{τ} bins

Feed-down subtraction

The D-meson production cross-sections $d\sigma/dp_{\top}$ contain the contribution prompt $(c \rightarrow D)$ and feed-down from B-decays $(b \rightarrow B \rightarrow D)$

Acceptance x efficiency from Monte Carlo for feed-down D mesons

$$f_{\text{prompt}} = 1 - \left(N^{\text{D feed-down raw}}/N^{\text{D raw}}\right) = 1 - \left(\frac{d^2\sigma}{dy\,dp_{\text{T}}}\right)_{\text{feed-down}}^{\text{FONLL}} \cdot \frac{(\text{Acc} \times \varepsilon)_{\text{feed-down}} \cdot \Delta y \, \Delta p_{\text{T}} \cdot \text{BR} \cdot L_{\text{int}}}{N^{\text{D raw}}/2}$$

Beauty production cross section from FONLL + EvtGen B→D decay kinematics N^{Draw} contains both particles and antiparticles, while FONLL does not

D-meson cross section

p_{T} differential production cross section for prompt charmed D mesons

- FONLL pQCD-based calculations [Cacciari et al., JHEP 1210 (2012) 137]
 fully compatible with data
 - FONLL predictions on average lower than the measured cross section

D*+/D+ cross section ratio @ 8 TeV

- D*+ and D+ compared to each other and with FONLL predictions
- The ratio of the production cross section is compatible with the predicted ratio by FONLL

Comparison to 7 TeV results

ALICE 2010 data, pp collisions at $\sqrt{s} = 7 \text{ TeV}$ JHEP 1201 (2012) 128

Within the statistical fluctuations, the 8 TeV and 7 TeV results are fully compatible

Conclusions

- The production cross section of D*+ and D+ was measured by ALICE in pp collisions at 8 TeV in the transverse momentum range $1 < p_T < 24$ GeV/c
- The results of D+ and D*+ mesons are consistent
- The cross section evolution with the center-of-mass energy, as shown by the comparison of the 8 TeV results with the 7 TeV published cross sections, is well predicted by FONLL calculations
- The analysis of the $D^o \rightarrow K^-\pi^+$ channel is ongoing: stay tuned for the results!

Backup slides

The ALICE detector - ITS

Inner Tracking System

- ✓ Vertex reconstruction
- ✓ Tracking

The ALICE detector - TPC

Time Projection Chamber

- ✓ Tracking✓ Particle identification

15

The ALICE detector - TOF

Efficiency correction

- Prompt D-meson production yields obtained by correcting the raw yields for the acceptance x efficiency
- Correction factor determined both for prompt D-mesons and for the feed-down from B-meson decays
- B decays are more displaced from the primary vertex (cτ 500 μm): feed-down D-mesons more efficiently selected by topological cuts
- Efficiencies were computed using Monte Carlo simulations, configured to reproduce:
 - the hadronic decays channels of interest for the analysis
 - the multiplicity distributions observed in data
 - the conditions of the luminous region
 - the ALICE subsystems, in terms of active electronic channels, calibration, time evolution during the data taking

Efficiency correction

- Prompt D-meson production yields obtained by correcting the raw yields for the acceptance x efficiency
- Correction factor determined both for prompt D-mesons and for the feed-down from B-meson decays
- B decays are more displaced from the primary vertex (cτ 500 μm): feed-down D-mesons more efficiently selected by topological cuts

Systematic uncertainties

Sources of systematic uncertainties investigated in this analysis:

- Raw yield extraction from the invariant mass distributions
- Particle identification (PID) strategy
- Cut variation (topological selection criteria)
- $p_{ op}$ shape of the generated D in the MC
- Tracking efficiency
- Feed-down subtraction

PT	1-2	2-3	3-4	4-5	5-6	6-7	7-8	8-10	10-12	12-16	16-24
Raw Yield extraction	8	6	3	3	3	3	3	2	2	2	2
PID	0	0	0	0	0	0	0	0	0	0	0
Cut Variation	10	10	5	5	5	5	1	1	1	1	1
p_T shape	2	2	1	1	0	0	0	0	0	0	0
Tracking	9	9	9	9	9	9	9	9	9	9	9
feed-down above	4	3	3	2	3	2	2	1	2	2	1
feed-down below	50	17	11	7	6	6	3	5	5	6	8

Systematic uncertainty evaluated for the D*+ meson