Ferromagnetism of a repulsive Fermi gas

Andrea Amico

Società Italiana di Fisica, Padova, 28/09/2016

Repulsive Fermi gases

Stoner ('33): Perturbation theory & short-range repulsion: kinetic vs interaction energy

Why ultracold gases?

Fermi system with short repulsive interaction

- No lattice
- No impurities (disorder)

Problem: Short-ranged repulsive interactions only if a bound state exists

- Geometry
- Dimensionality (3D-2D-1D-0D)
- Temperature (T/TF)
- Population imbalance

Control of the interactions

Zeeman levels

Fano-Feshbach resonance

Experimental tuning of the interactions

N(●) and N(●) fixed separately (no spin-exchange)

Spontaneaous magnetization → domains of unequal ● & ● densities

Short-ranged repulsive interactions only if a bound state exists

Repulsive Fermi gas intrinsically metastable (upper branch) FM instability always competing with pairing

Our approach

1. Create a 1-2 Li mixture @300 G ($a_{12}\sim-300a_0$) in a crossed trap

$$v_{x,y} \sim 285 \ Hz$$
 $v_z \sim 22 \ Hz$
 $N_{\uparrow,\downarrow} \sim 4 - 8 \ 10^4$
 $E_F \sim 7 - 11 \ kHz$
 T
 $T_F \sim 0.05 - 0.7$

$$\frac{T}{T_F} \sim 0.05 - 0.7$$

- 2. Adiabatically separate the two spin clouds @ 0.5G ($\mu_1 \sim -\mu_2$) via magnetic gradient
- 3. Rise up thin optical barrier, and ramp up the Feshbach field to B_f

Sudden release of the barrier

Spin-dipole frequency univocally linked to spin susceptibility:

$$\omega_{SD}^2 = \frac{N_{\uparrow} + N_{\downarrow}}{m \int d\mathbf{r} z^2 \chi(n)}$$

Softening of v_{SD} unveils FM instability!

Small amplitude modulation on top of a slow (exponential) drift

Sudden release of the barrier

After removal of the drift via exp. fit... isolate out-of-phase motion $\Delta d(t)$

Theory by A. Recati for: 100% overlap ——— 25% overlap ———

Adiabatic release of the barrier

Monitor magnetization dynamics after slow release at varying repulsion:

$$\Delta M = \frac{M_{\uparrow} - M_{\downarrow}}{2}$$

- At short evolution time, for strong repulsion, complete halt of spin dynamics!
- $au_{\rm P}$ longer for large $\kappa_{\rm F}a$ & low T. Duration explainable by repulsive polaron properties

Adiabatic release of the barrier

Close interconnection between jump of v_{SD} in #1 and τ_{P} >0 in #2 !!

Use τ_{D} >0 to draw boundary for existence of a (meta)stable FM state

Conclusion and outlooks

Indication of a ferromagnetic instability (at least in a metastable sense) in a repulsive Fermi Gas

Softening of the spin dipole frequency

Freezing of the spin dynamics (short time)

G. Valtolina et al, arXiv:1605.07850

Outlooks:

- Study of repulsive and attractive polarons at broad Feshbach resonance (in progress).
- Implemenation of disorder in the system.
- Quasi-2D regime.

Thank you

F. Scazza (Postdoc)

- G. Valtolina (PhD)
- A. Amico (PhD)
- A. Burchianti (Postdoc)

Theory:

A. Recati (Trento/Munich)

T. Enss (Heidelberg)

P. Massignan (Barcelona)

C. Fort G. Roati M.Z. M. Inguscio