

### **Radioactive Wastes and Disposal Options**

Joint EPS-SIF International School on Energy 2017, Varenna, Italy

### Bernhard Kienzler,

Karlsruhe Institute of Technology (KIT), Institute of Nuclear Waste Disposal (INE)

Institut für Nukleare Entsorgung (INE)



https://sanonofresafety.files.wordpress.com/2012/02/onedaysonallthiswillbeyours.jpg?w=318&h=259

### **Outline**



- Origin, type and amount of radioactive wastes
- Fuel Cycle: Reprocessing or direct disposal of used (spent) nuclear fuel
- Classification of wastes
- Disposal International disposal projects
- Safety analysis, data and models
- Conclusions

### **Nuclear fuel**

#### **BWR** fuel element



### Fuel materials:

- Uranium oxide
   UO<sub>2</sub>
   5% <sup>235</sup>U
- MOX~5.5 % Pu

### Rod:

Zircaloy tube L:  $\sim$  4.4 m  $\varnothing_{\rm out}$ : 9.5 - 11.0 mm Active length:  $\sim$  3.85 m

#### Plenum:

Steel spring He pressure ~ 20 b

### **UO<sub>2</sub> Pellet**:

H ~ 10 mm m=10 g

> 272 pellets per rod

### PWR fuel element









| Pellet                              | KKG  | GKN II | KKL |
|-------------------------------------|------|--------|-----|
| Burn-up <sub>av.</sub><br>[GWd/tHM] | 64   | 58     | 58  |
| Ø [mm]                              | 9.3  | 8.05   | 8.5 |
| Lin power [W/cm]                    | 228  | 167    | 184 |
| ΔT [K]                              | 725  | 528    | 585 |
| T <sub>coolant</sub> [deg.C]        | 325  | 305    | 263 |
| T <sub>center</sub> [deg.C]         | 1050 | 833    | 848 |

$$\lambda_{\text{irrad fuel}} = 2.5 \text{ W m}^{-1} \text{ K}^{-1} \text{ (Lucuta 1996)}$$
  
 $\Delta T = \text{lin. power/}(4\pi \cdot \lambda)$ 

| Power ramp               |     |  |  |  |
|--------------------------|-----|--|--|--|
| Lin. Power Change [W/cm] | 100 |  |  |  |
| Δ <b>T [K]</b>           | 318 |  |  |  |

# **Composition of Spent / Used Nuclear Fuel**



- Disturbed UO<sub>2</sub> matrix.
- Fission gases (Kr, Xe), not reactive.
- Rare earth elements and Y, Zr, Ba and Sr, oxides form solid solutions with UO<sub>2</sub>, or single phase precipitate.
- Mo, Cs and Rb, oxidized or not, depending on the O/U ratio.
- Noble elements like Ru, (oxides unstable) forming metallic precipitates within the UO<sub>2</sub>
  - ε phase: Mo, Ru, Rh, Pd, and Tc



#### Effects of fission:

- Swelling of UO₂ lattice
   (50 GWd/tHM→5.5% FIMA)
- Distortion of lattice
- Oxygen redistribution
- Heat conductivity
- Specific heat
- Mechanical properties fracture patterns
- Formation of pores Diffusivity

# High burn-up spent nuclear fuel





Used nuclear fuel is one of the most complex materials

Elemental composition

Chemical state of the elements

Heterogeneity

Example: Ø 10 mm, m: 10 g, 26 yrs. after discharge

 $\beta/\gamma$  activity: 2.6×10<sup>11</sup> Bq,

 $\gamma$  dose rate: 4 Sv/hr

 $\alpha$  activity: 9.7×10<sup>9</sup> Bq



# **Interim storage**

SALES AND A STATE OF THE PROPERTY OF THE PROPE

Heat generation of SNF:

Discharge: 200 kW/t

after 1 yr.: 13 kW/t

10 yrs: 2 kW/t

100 yrs. 0.5 kW/t



# Dry interim storage in CASTOR casks



n: 19 PWR Ass./ 52 BWR Ass.



### **Outline**



- Origin, type and amount of radioactive wastes
- Fuel Cycle: Reprocessing or direct disposal of used (spent) nuclear fuel
- Classification of wastes
- Disposal International disposal projects
- Safety analysis, data and models
- Conclusions

# Wastes from fuel cycle and other sources





### Waste streams from reprocessing:

- Hulls/cladding (solids),
- High-level waste, HNO<sub>3</sub> solution (liquid),
- Intermediate-level wastes acidic solutions (liquid),
- Low-level wastes, HTO-bearing liquids decontamination detergents (liquid)
- Solid wastes, e.g. filters, etc.

### Other sources

- NPP operational wastes (~300 m³/yr.)
- Industry (sources)
- Research
- Medical diagnostic/therapy
- Decommissioning
- Scales (geothermal energy)

## **Radioactive Waste Classification in Germany**





### **LLW / ILW Treatment**





# Vitrification of high-level liquid waste





# **AREVA** vitrified waste returned to Germany



 $\beta/\gamma$  - activity: 65 TBq for <sup>137</sup>Cs

115 TBq for <sup>90</sup>Sr/<sup>90</sup>Y 75 TBq for <sup>241</sup>Pu

α - **activity**: 3.3 TBq for Pu

2.0 TBq for <sup>244</sup>Cm

4.2 TBq for nuclides with half-life > 50 yrs.

β/γ - contamination: 4.0 Bq cm<sup>-2</sup> α - contamination: 0.4 Bq cm<sup>-2</sup>

### **Other parameters**

Dose rate: < 150 Gy/h
Thermal power < 90 W
Weight < 850 kg



### **Outline**



- Origin, type and amount of radioactive wastes
- Fuel Cycle: Reprocessing or direct disposal of used (spent) nuclear fuel
- Classification of wastes
- Disposal International disposal projects
- Safety analysis, data and models
- Conclusions

# **Disposal strategies**



LLW / short-lived ILW (R&D, industry, operation of NPP)

Reminder:  $A/A_o = \exp(-\ln 2/t_{1/2} \cdot t)$ for  $t = 10 \cdot t_{1/2}$ :  $A/A_o = 0.001$ 

- Until 1970ies: sea disposal
- International: shallow land disposal
- Germany: geologic disposal (Asse salt mine since 1967)

- HLW, SNF (long-lived &  $\alpha$ -bearing wastes):
  - International consensus:Geologic disposal in deep layers of the underground

# LLW / ILW disposal close to the surface





since 40 yrs. in opreation until ~ 2050





### **HLW / SNF: Potential Host Rocks**



### Rock salt

- + Impermeability
- Visco-plastic behaviour (convergence)
- + Heat conductivity
- + Temperature load
- + Age of salt domes
- + Experiences
- Solubility
- Low retention capacity
- Dissolution of salt
- Uplift (~ 0,02 mm/a)

## Clay rocks

- + Impermeability
- Plasitc behaviour (swelling)
- + Insoluble
- High retention capacity
- Low heat conductivity
- Low temperature load
- Complicated mining (EDZ)
- Diffusion processes

### Granite

- + Stable mechanics
- + High stress load
- Moderate heat conductivity
- + Experience

- Water bearing fractures
- Low retention
- Technical barriers required (bentonite)
  - →low temperature load



# **Multi-barrier system**



- Waste form (glass, spent fuel, ...)
- Disposal cask
- Engineered barriers (backfill, sealing, ...)
- Host rock
- Surounding / Overlaying rocks

# Requirements for engineered barriers

- Barrier against penetration of groundwater / solutions
- Sorption capacity for RN
- Chemical "buffering" (pH, Redox, composition of solutions...)
- Mechanical stability
- Heat conductivity (HLW, SNF)
- In granite: decoupling of cask from rock (earthquake)

# **Finland SNF Disposal (Posiva)**





Disposal Concepts: Granite (Sweden,

Finland)







Disposal Concepts: Granite (Sweden,

Finland)



**SKIT** 

Disposal Concepts: Granite (Sweden,

Finland)







**SKIT** 

# **HLW disposal in France (ANDRA)**



shallow land disposal



# **Disposal Concept in Argillite (France)**



# - Retrievability for ~200 yrs.



# **Host rock Clay**





# **Host rock Clay**







### **Outline**



- Origin, type and amount of radioactive wastes
- Fuel Cycle: Reprocessing or direct disposal of used (spent) nuclear fuel
- Classification of wastes
- Disposal International disposal projects
- Safety analysis, data and models
- Conclusions

## Why disposal in deep underground?



### **Technical reasons:**

- Concentration of radiotoxic materials
- Isolation from biosphere
- Protection of environment and population
- Protection against intended and unintended access.
- Safeguards (nonproliferation of fissile materials)

### Ethical and societal reasons:

- Passive safety
- Unattended (maintenance free)
- No burdens for future generations

# What do we need to know for safety analysis?



# Assumption: Water facilitates radionuclide mobilization & transport

- Basics
  - Thermodynamics of radionuclides
  - Solids, complexation & redox reactions
- Waste form behavior
  - Radionuclide mobilization from the waste forms
  - Corrosion processes
  - Solubility
  - Formation of secondary phases
- Radionuclide migration
  - Sorption
- Performance under natural/realistic conditions
- Modelling tools

# Safety Research for Nuclear Waste Disposal



# - Basic Investigations -

### **Molecular Process Understanding**

- Aquatic chemistry/thermodynamics of actinides and LLFP
- Interaction of actinides with mineral surfaces
- Secondary phase formation
- Stability of colloids/interaction with actinides
- Quantum chemical calculations



# Safety Research for Nuclear Waste Disposal



- Applied Investigations -

# Radionuclide retention in the multibarrier system

Waste Form (Spent fuel, HLW-glass)
 Canister, Backfill Material,
 Host Rock/Geological Formation

Radiation chemical effects

Field experiments (Underground laboratories)

Reactive transport modelling



### Radionuclide Mobilization from SNF



- Instant release fraction.
- Matrix dissolution.
  - Radiolysis effect.
  - Secondary phase formation.
  - H<sub>2</sub> effect.
  - **ε** phase effect
- Effect of cladding

# Radionuclide mobilisation from spent nuclear fuel non-reducing conditions





Radiolysis of water Generation of oxidants  $(H_2O_2, OH^{\bullet}, HO_2, O_2)$ and reductants  $(H, H_2, e_{aq})$ diffusion of H, H2 leaving

**Matrix dissolution** oxidation of  $UO_2$ , to  $UO_{2+x}$ dissolution of U(VI) + RNs

the reaction zone

### **Secondary phase** precipitation U(VI) phases may incorporate other

# Radionuclide mobilisation from spent nuclear fuel under reducing conditions





# Safety Analysis for a Nuclear Waste Disposal



Assumption: The future is unknown,

safety analyses are build-up on the concept of scenarios

A scenario is specified by a combination of some FEPs which characterize one single potential evolution of the disposal system.

FEP: Features, Events, Processes

# **Example scenario**



A scenario is specified by a combination of some FEPs which characterize one potential evolution of the disposal system.

| FEP 1                     | FEP 2                             | FEP 3                      | FEP 4                        | FEP 5                        | ••••                          |
|---------------------------|-----------------------------------|----------------------------|------------------------------|------------------------------|-------------------------------|
|                           |                                   |                            |                              |                              |                               |
| Water<br>penetra-<br>tion | Geochem.<br>Milieu                | Corrosion canister         | corrosion<br>waste form      | Radionuclide mobilization    | RN<br>Löslichkeit<br>Sorption |
| q = f(t)                  | pH, Eh,<br>c(macro c)<br>c(trace) | r <sub>B</sub> =f(T,c,pH,) | r <sub>M</sub> =f(t,T,c,pH,) | r <sub>M</sub> =f(t,T,c,pH,) | c <sub>RN</sub> =f(pH,c)      |
| Value:<br>(yes/no)        | Numerical<br>function             | Numerical<br>function      | Numerical<br>function        | Numerical<br>function        | Numerical function            |

$$\dot{D}_{Scen1} = f\left(\dot{q}_{FEP1}, geochem_{FEP2}, t_{cask \, life-time}, r_{M}, r_{RN}, c_{RN}, pH, Eh, ...\right)$$







# Application of modells in PA



### Model:

No ab-initio modells, but

- Modells describe parts of reality,
- on basis of free parameters (determined by experiments)

PA:



### **Restrictions:**

No extrapolation exceeding the parameterized set of features and processes.

# **Sources of Error and Uncertainty**



Model Structure

George H. Leavesley, Hydrologist, USGS, Denver, CO

Parameters

Data

 Forecasts of future conditions



### **Outline**



- Origin, type and amount of radioactive wastes
- Fuel Cycle: Reprocessing or direct disposal of used (spent) nuclear fuel
- Classification of wastes
- Disposal International disposal projects
- Safety analysis, data and models
- Conclusion

Disposal and technical demonstration of safety is an interdisciplinary approach including physics, (radio-)chemistry, geology, mining, ...

# **Open questions**



- Convincing the public: NIMBY
- Safety vs. Retrievability / Reversibility
  - Reasons for retrieving the HLW:
    - Unexpected behavior of the disposal (in which time frame?)
    - Resources (Pu)
    - Improved waste management techniques (research?)
  - Monitoring
  - Preservation of knowledge, knowhow, techniques, ...
- Future human actions

# Risk by nuclear waste disposal



 Average natural dose rate in Germany: 2.4 mSv/a (variation 1.4 -5.7 mSv/a)



Safety requirements for a disposal in Germany:

- Exposure rate by probable scenarios: 1.8 – 7.1 ‰
- Low probable scenarios:1.8 7.1 % of natural burden



# Thank you for your attention