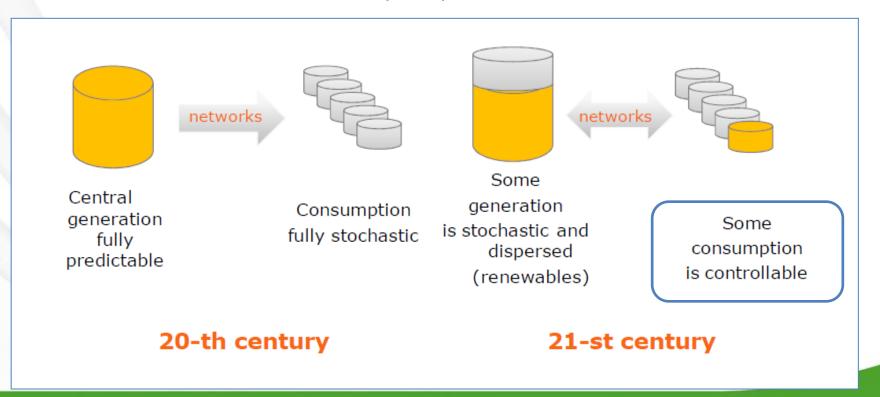


agenda

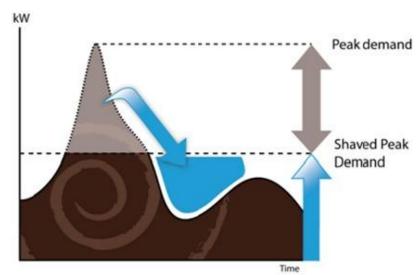
- Role of customers
- Planning & operation of smart grids
- Comparing solution: KPIs
- Research activity

Role of customers


Elements of the system

Integrating DG – Towards smart grids

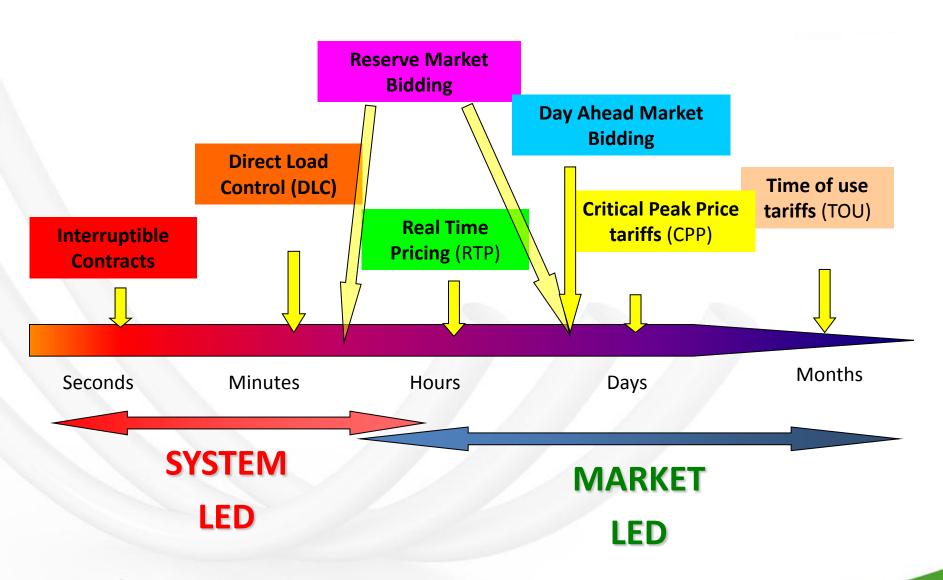
The widespread use of diffuse generation requires a gradual evolution of the distribution networks:


- From a passive structure to an active one, similar to the current transmission network;
- New control techniques and the management of distributed networks focused on maximization of the GD penetration, which guarantee suitable levels of the service quality to all consumers involved.

Demand Response

Demand Response: customers change their absorption profile, after receiving a *price* signal or a *system* signal (security of the system)

- Curtailment of peaks
- Filling «valleys» (off peak hours)
- Load shifting


Benefits fo the customer:

- Reward for the participation it is rewarderd the change of behaviour w.r.t. the usual profile
- Social engagement (improved awareness, active participation)

Benifits for the power system:

- Avoid over-sizing of generation side
- Increase the efficiency of the generation
- Planning of distribution networks on the average load instead of critical peaks

Demand participation: Operational time (after notice)

Demand Side Flexibility

CONTROLLING DEMAND

- industrial, commercial, domestic demand have intrinsic levels of flexibility
- especially those including physical energy storage (e.g. thermal storage inertia,
 potential energy storage water pumping (municipal), electric energy storage EVs

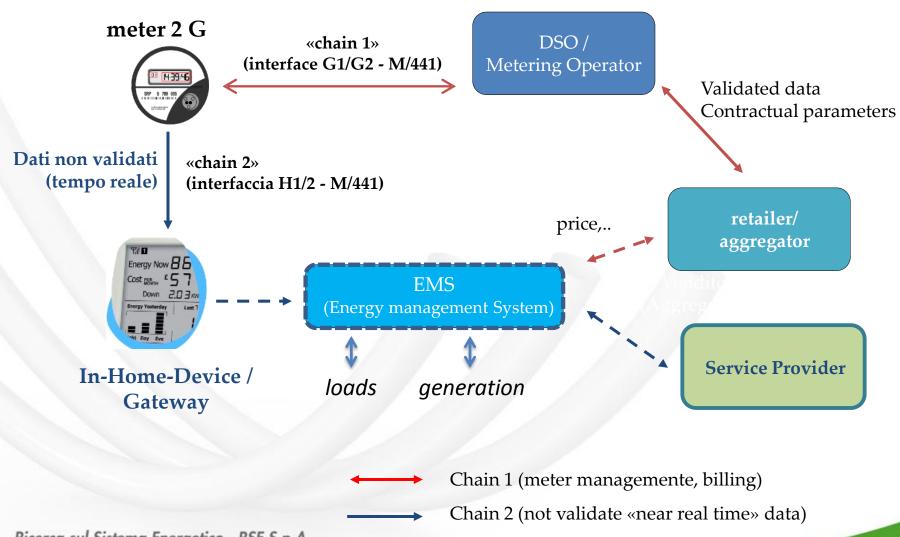
ENERGY EFFICIENCY IS A KEY PRE-REQUISITE

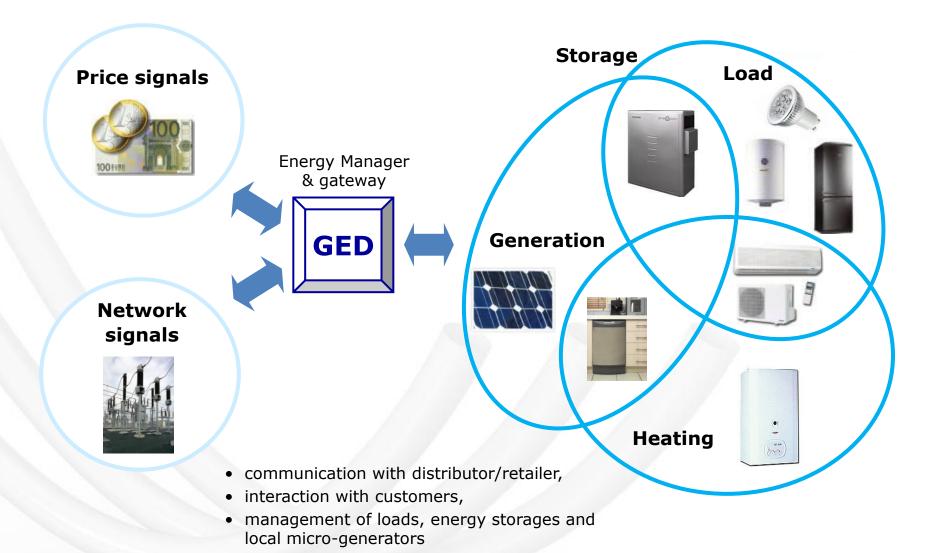
- Increased awareness is the first step for being «active customers»
- it shapes demand to better adapt to available supply

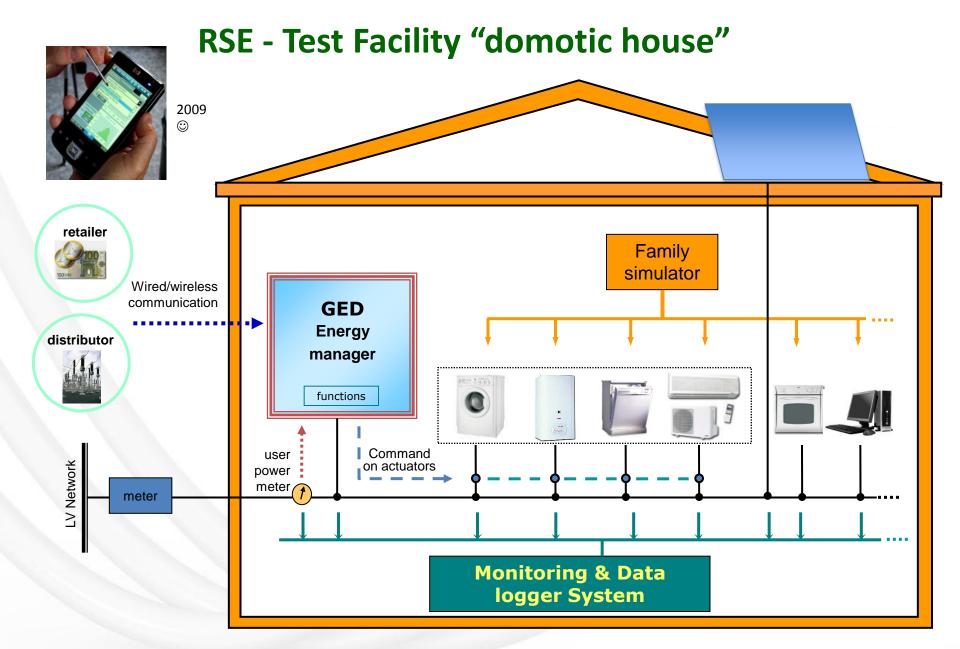
ELECTRIFICATION OF ENERGY USES

increased electrification of transport and heating/cooling (Heat Pumps)

Increased awareness


Example of real monitoring of a residential customer


- From literature: In-home-displays can reduce consumption from 3% to 11 %
- In Italy: Smart Info (Enel): 5,000 customers, -4% on the average


Italy- roll out of second generation of electricity smart meter

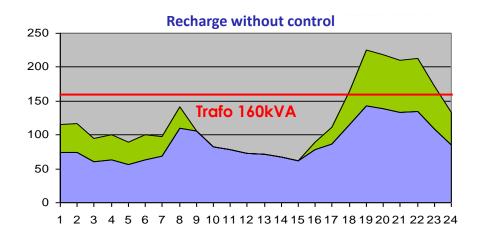
35 Million meters, 4.3 G€ (2017-2031)

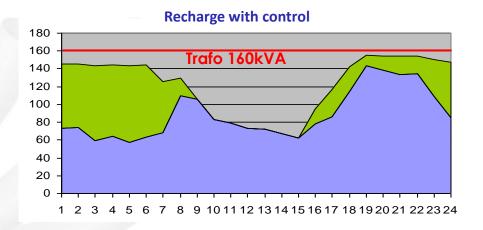
RSE - Home gateway & energy manager

New operators entering in the market

New load: electric vehicle

- In the home: a (particular) load
- On the road: Recharge service (not buying electricity)
- Impacts / benefits on the consumption / distribution network / power system
- Perspectively:
 - AC recharge (one way): flexible load
 - DC recharge (bi-directional, Smart charger): V2H, V2G





Demand Management - Electric Vehicles Charging

Prosumers – perspective role

opportunities for customers:

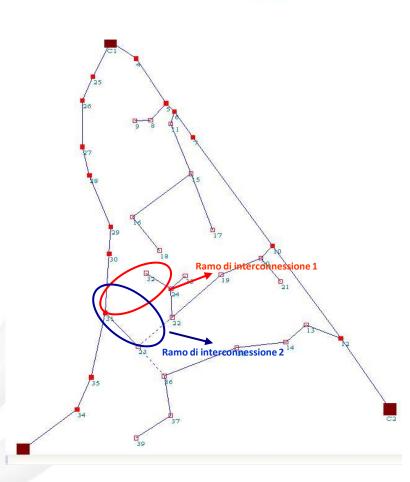
- local 'dispatching': increase self consumption (scheduling loads with PV production)
- perspectively, participation to the services (by aggregation)

opportunities for DSOs:

- 'smart' DG has less (negative) impacts on distribution networks
- perspectively, integration of PV plants in network operation
- possible integration of real time data from inverters in the LV monitoring systems (depends on market scheme also)

challenges:

- "lay people" involved
- simplified & future proof solutions
- need for a widespread communication infrastructure (CAPEX, OPEX who pays?)


Planning & operation of «smart grids»

RES integration: system planning with DG

SPREAD calculates the best network configuration minimising the overall costs for the distribution operator (CAPEX + OPEX);

Costs categories considered:

- Network investments (upgrade of existing lines, transformers, switchgears and installation of new network equipment);
- Minimise network losses in lines and transformers;
- Minimise non-delivered energy in case of unplanned unavailability;
- Optimise active management (remunerating ancillary services)

Managing «active distribution networks»

Technical Issue	BAU Distribution Network	Active Distribution Network
Voltage rise/drop	 Limits/bands for demand and generation connection/operation Generation tripping Capacitor banks 	 Coordinated volt-var control Static var compensators Coordinated dispatch of DER On-line reconfiguration
Hosting Capacity	 Network reinforcement (e.g., lines/transformers) 	Coordinated dispatch of DEROn-line reconfiguration
Reactive Power Support	 Dependency on transmission network Capacitor banks Limits/bands for demand and generation connection/operation 	 Coordinated volt-var control Static var compensators Coordinated reactive power dispatch of DER
Protection	 Adjustment of protection settings New protection elements Limits for generation connection Fault ride through specifications for generation 	On-line reconfigurationDynamic protection settings
Ageing	 Strict network designs specifications based on technical and economic analyses 	Asset condition monitoring

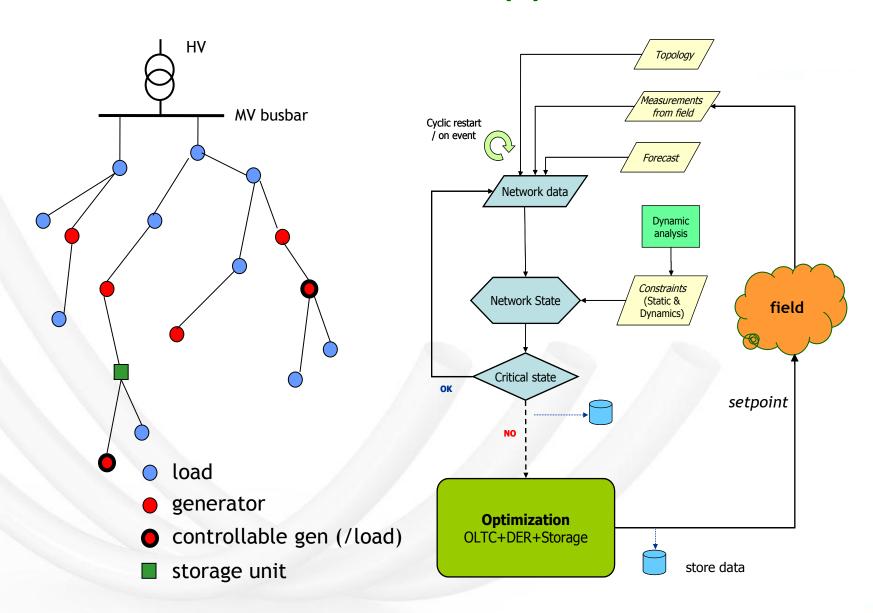
Advanced control approach

Objective:

Develop advanced control strategies in order to maximise DG diffusion (hosting capacity) and to assure adequate power quality levels

Two different approaches:

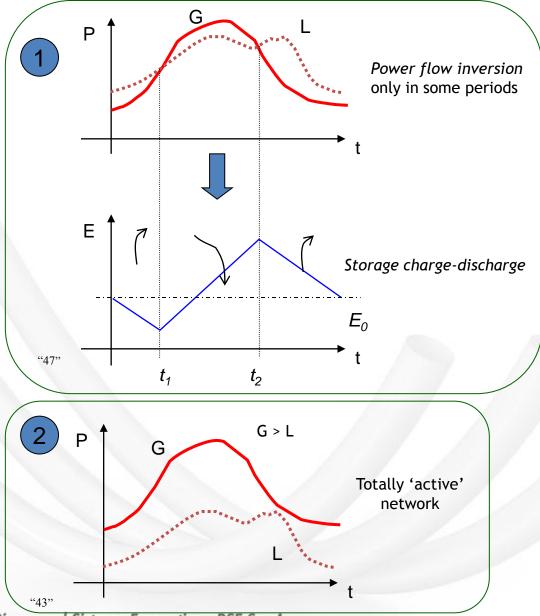
- diffuse control (local),
- centralised control



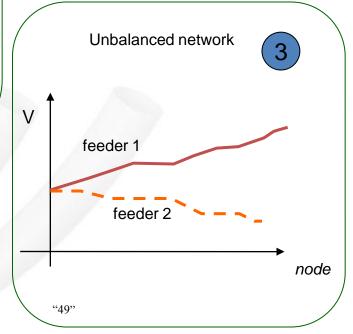
Example - Optimization algorithm ('DISCoVER')

- Spatial perimeter: MV network under a Primary Substation (in a fixed configuration)
- Temporal horizon: current network status (from State Estimation) and following 24 h
- Load and generation forecast
- Optimization procedure to minimize costs of control actions needed to satisfy technical constraint
- Several resources

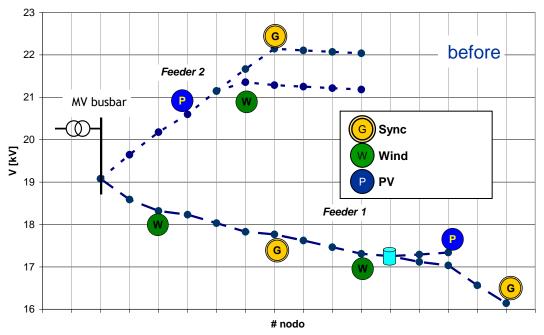
DISCOVER (2)



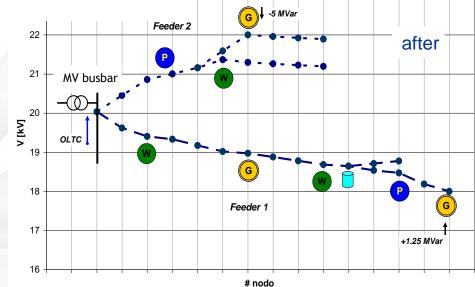
- On Load Tap Changer (OLTC):
 - operated by DSO
- Capacitor bank
 - operated by DSO
- Reactive power injection/absorption by 'controllable' generators (subset of DERs)
- Active power modulation of "controllable" generators (subset of DERs)
- Storage:
 - operated by DSO (integral constraint on 24 h period)



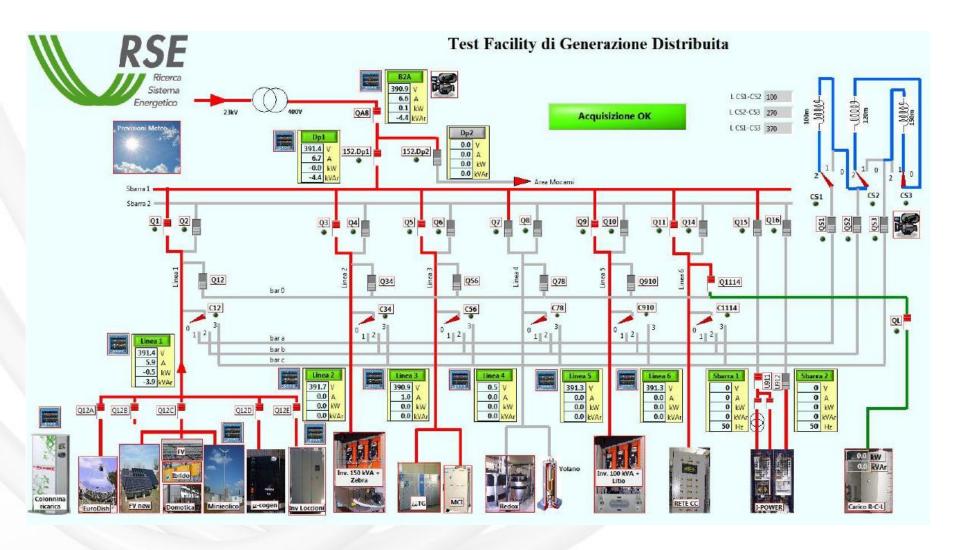
capability curves of controllable resources costs of resources operated by the DSO rewards of Ancillary Services


Reference scenarios

It is necessary to define an adequate 'business model' for costs (relative values)



Case 3



Unbalanced feeders: OLTC cannot operate properly

reactive power modulation (to reduce the 'fork') + OLTC

Example – RSE test facility

Real application: Italian demonstrator of EU project Grid4EU

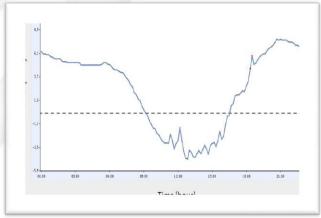
Grid4EU - demonstrators

	RWE	VATTENFALL 😂	IBERDROLA	L'ENERGIA CHE TI ASCOITA.	CEZ GROUP	ELECTRICITÉ RÉSEAU DISTRIBUTION FRANCE	
Innovative Power Management at MV level	A MARKET			<u> </u>	A A		
Innovative Power Management at LV level		TT	Ţ _Ţ		<u> </u>	TT 0	
Distributed Energy Resources (DER)	<u> </u>			<u> </u>			
Storage				• 📴 -		• 🖟 -	
Active Demand			<u></u>			W	
Micro-grid (Islanding)							
Climate	Moderate Continental	Cold & Stormy Continental/ Oceanic	Mild Mediterranean	Dry Mediterranean	Cold Continental	Warm & stormy Mediterranean	
Population Density	Semi-urban	Urban	Urban	Rural	Semi-urban	Semi-urban / urban	

- Nov 2011- Jan 2016
- Carried by 6 DSOs (cover more than 50% of the metered electricity customers in Europe)
- 27 partners (Utilities, Energy Suppliers, Manufacturers, Research Institutes)

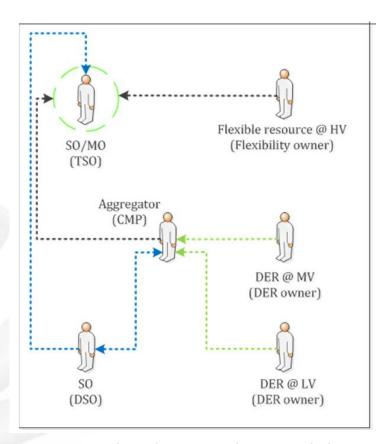
Demo4 - Grid4EU

- 2 primary substations
- 20 MV lines, approx 110 secondary substations
- High RES penetration (105 MWp) with rather low consumption
- Reverse flow



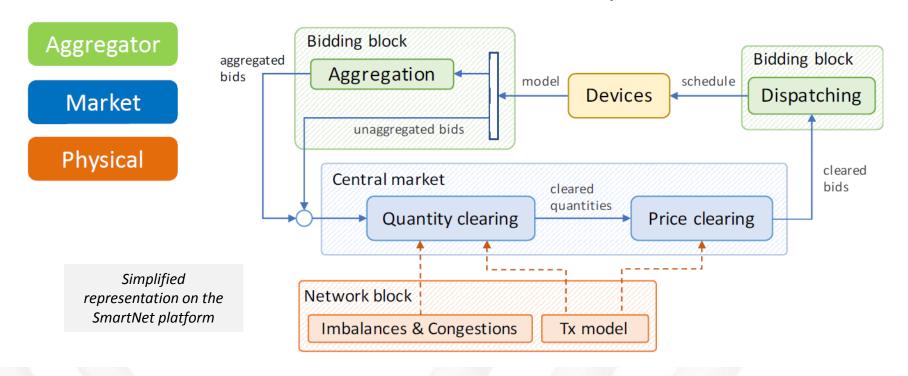
Example – SmartNet

Distributed energy resources (DER) participate to the Ancillary Service market


→ Interaction TSO-DSO-DER

5 possible coordination *schemes* TSOs & DSOs for AS by distributed flexibility resources

- Centralized AS market model
- Local AS market model
- Shared balancing responsibility model
- Common TSO-DSO AS market model
- Integrated flexibility market model

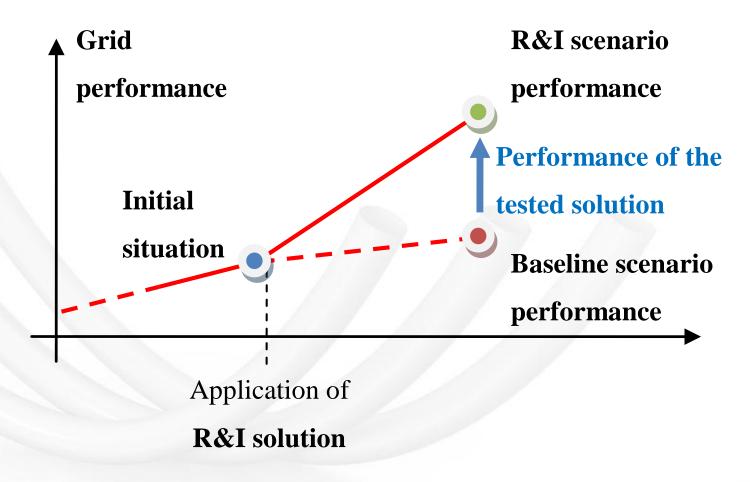

3 pilots:

- Italy (hydro plants)
- Denmark (pools)
- Spain (radiobase stations)

Centralized AS market model

Distribution networks & ancillary services

- the extended centralised market model is simple, but DSO grid constraints are not included
- DSOs do not benefit from possible advantages of DER flexibilities
- Other schemes involve complex architecture, which can result in higher costs, numerical unfeasibility, and risk of non liquid markets


Evaluate and compare «smart grid» solutions

Comparing solution

- Several technical solutions are available
- → Which is the «best»?
- National regulatory authority: output based regulation; increased reward for advanced solutions, only demonstrating the benefits by means of indicators
- Cost-benefit analysis; e.g. smart metering
 - → Needs to identify indicators and procedures

Improvement of the network performances

Research and Innovation (R&I) **technologies** are designed in order to increase the **performance** of a network under test (benefit).

KPI Grid4EU demos - compare different solutions

One of the objective of the project was to compare the control solutions

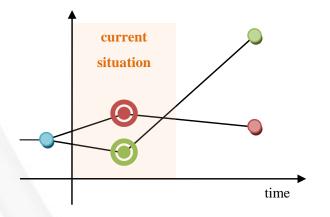
→ For this reason the same KPIs were evaluated in the different demos.

DEMO	RWE	Vattenfall	Iberdrola	ENEL	CEZ	ERDF
Energy Losses	V		V	V	V	V
Fault Awareness, localization and Isolation Time	V	V	V		V	
Network Hosting Capacity	V			V		V
Line voltage profiles				V	V	V
Islanding Metric					V	V
Use of Standards	V		V	V		V
Recruitment			V	V		V
Active Participation			V	V		V

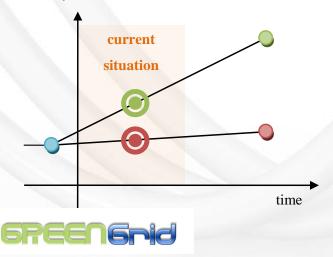
KPI Grid4EU - comparison

DEMO	1	2	3	4	5	6
Energy Losses KPI [%]	26-30		±5	2.2-9.3	47.5	28-37 (storage losses)
Fault Awareness, Localization and Isolation Time KPI [%]	21.5	78.8	-12.8		85-90	
Network Hosting Capacity KPI [%]	17.4			10-63		-
Line voltage profiles KPI [%]				0.8-3.4	0	-
Islanding Metric					1.7-6	0.25-0.63
Use of Standards KPI [%]	100		88	80		-
Recruitment KPI [%]			37	31		15-50
Active Participation KPI [%]			5-28	100		>0

The comparison between different network /solution is quite difficult due to the variation between the demos of:


- KPI definitions
- Calculation methodology
- Available data (combination of measured and calculated data)
- Baseline condition
- Network characteristic

Beside the KPI sshow:


- High interdependence;
- High variability;
- Real field issues (the *a priori* calculation can be different to the real field).

KPI – advanced calculation procedure

Network performance evolution from economic/environmental point of view

Network performance evolution from technical point of view

Ricerca sul Sistema Energetico - RSE S.p.A.

In some cases, the currently measured smartgrid impact does not represent in an effective way the expected performance of the adopted solutions.

Thus, the impact has to be opportunely scaled in order consider a selected future scenarios.

This scaling procedure is normally necessary when **economic** and/or **environmental** aspects are considered:

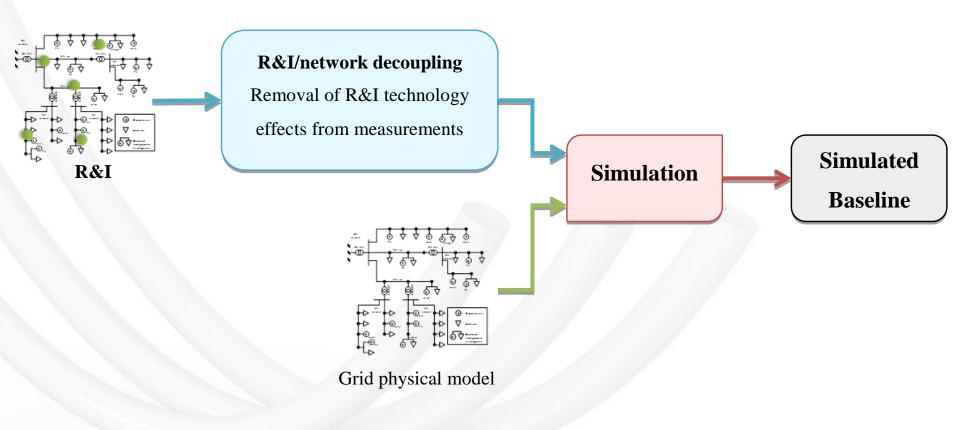
- •Cost Benefit Analysis

 (performance from the economic point of view)
- •Life Cycle Assessment
 (performance from the environment point of view)

When the performance of the adopted solutions has to be evaluated from the **technical point of view**, the current scenario often can be reasonably considered comparable with the future one.

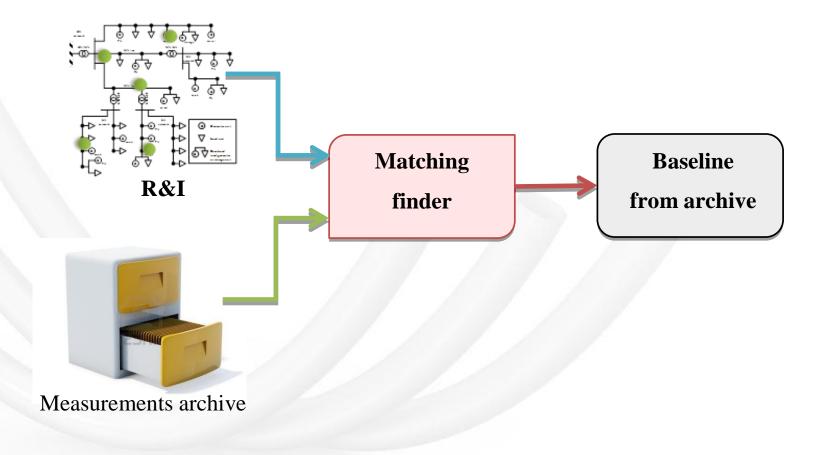
Definition of the Baseline scenario

Baseline (BL)


For a given R&I scenario, the baseline corresponds to the network situation, if it exists, in which:

- a) the R&I technology is not operative
- b) customers have a consumption/generation profile which would have had if the R&I technology has not been operative
- c) network assets/devices shows the same behaviour which would have had if the R&I technology has not been operative

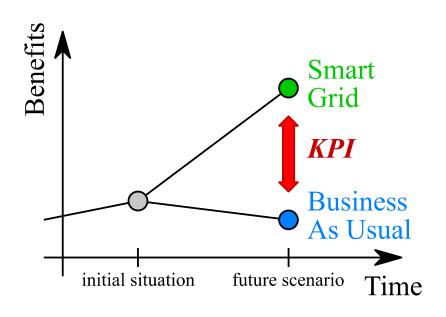
Assumption: even with no operative R&I technology, the behaviour of the network would be technically acceptable


Definition of the Baseline scenario (2)

Baseline from simulation

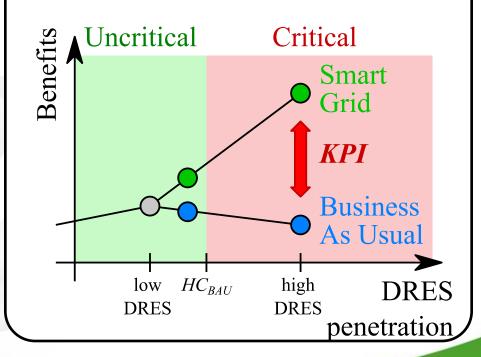
Definition of the Baseline scenario (2)

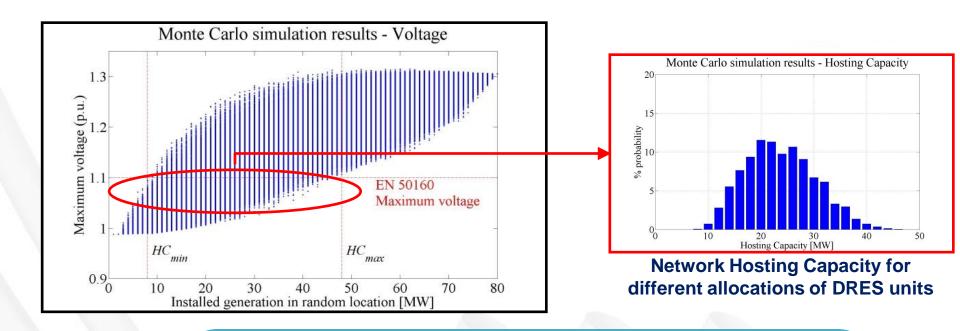
Baseline from historical data



EEGI and IGREENGrid calculation schemes

Hypothetical future scenario and comparison between:


- Network operated as usual
- Smart Grid

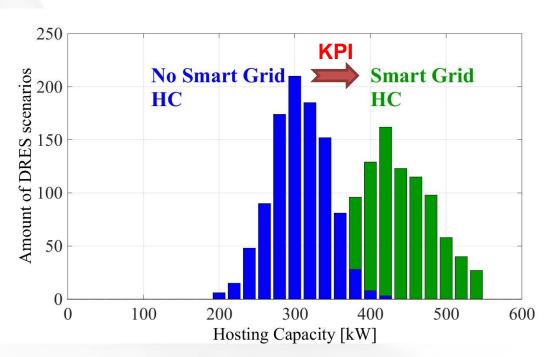


Hypothetical large DRES integration scenario and comparison between:

- Network operated as usual
- Smart Grid

Selection of the reference scenario

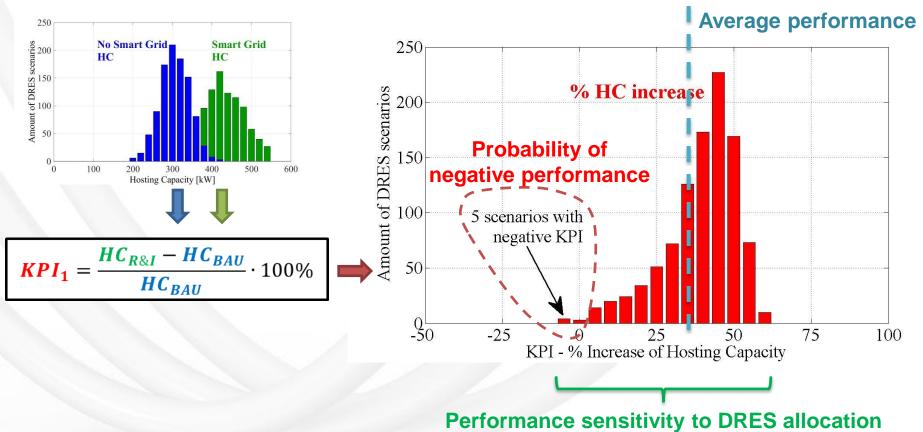
Simulation of scenarios with high penetration of DRES in distribution grids


Selection of situations in which the solution has a significant impact on network operations

Uncertainty related to the future scenario to be simulated (size and location of DRES units)

KPI example – Increase of DRES Hosting Capacity

 KPI measures the ability of a Smart Grid solution to maximize DRES generation that can be hosted by a distribution network



Simulation results calculated for an exemplificative Smart Grid solution applied on a distribution network.

- DEMO network simulated
- 1000 random allocations of DRES
- Time profiles of DRES and loads of the DEMO area

KPI – Increase of DRES Hosting Capacity (2)

The adopted simulation strategy returns results that can be processed for the extraction of numerous information for the evaluation of the performance of a solution

KPI IGreenGRID – Hosting Capacity

Centralized/Supervised solutions (*ICT-based*)

DEMO	Solution	Average Value [%]	Variability	Negative KPI prob.
GERMANY	MV centralized voltage control with field measurements - OLTC	67.00	0.57	0.00
SPAIN	MV centralized voltage control - OLTC + STATCOM control	64.53	0.67	0.00
AUSTRIA	MV supervised voltage control with field measurements - OLTC + DG reactive power control	62.99	1.38	0.00
AUSTRIA	MV supervised voltage control with field measurements - OLTC control	53.36	1.27	0.00
SPAIN	MV centralized voltage control - STATCOM control	20.02	0.19	0.00

Distributed solutions (local controller-based)

DEMO	Solution	Average Value [%]	Variability	Negative KPI prob.
GERMANY	MV distributed voltage control with AVR	37.75	2.87	0.00
FRANCE	MV distributed voltage control - DG reactive power control (droop Q-V control)	37.13	1.62	0.00
FRANCE	MV distributed voltage control - DG reactive power control (fixed tan(phi))	34.81	3.10	3.00
ITALY	Y MV distributed voltage control - OLTC + DG reactive power control 29.73		3.53	27.50
GREECE	MV distributed voltage control - DG curtailment + DG reactive power control	13.89	2.25	3.00
GREECE	MV distributed voltage control - DG curtailment		0.39	0.00

Enel progetto AEEGSI 39/10 «Carpinone» (Isernia)

KPI IGreenGRID- Increase of Energy Efficiency (losses)

Centralized/Supervised solutions (*ICT-based*)

DEMO	Solution	Uncritical situa	ation [%]	Critical situation	on [%]
GERMANY	MV centralized voltage control with field measurements - OLTC		-0.09		-0.13
SPAIN	MV centralized voltage control - OLTC + STATCOM control		0.08		0.04
AUSTRIA	MV supervised voltage control with field measurements - OLTC + DG reactive power control		-0.09		-0.13
AUSTRIA	MV supervised voltage control with field measurements - OLTC control		0.00		-0.02
SPAIN	MV centralized voltage control - STATCOM control		0.06		-0.02

Distributed solutions (local controller-based)

DEMO	Solution	Uncritical situation	on [%]	Critical situation	on [%]
GERMANY	MV distributed voltage control with AVR		-3.49		-2.95
FRANCE	MV distributed voltage control - DG reactive power control (droop Q-V control)		-0.02		-0.03
FRANCE	MV distributed voltage control - DG reactive power control (fixed tan(phi))		-0.27		-0.33
ITALY	MV distributed voltage control - OLTC + DG reactive power control		-0.11		-0.19
GREECE	MV distributed voltage control - DG curtailment + DG reactive power control		-0.02		-0.04
GREECE	MV distributed voltage control - DG curtailment		0.00		0.31

Conclusion on the use of KPIs

The use of simulations allows the evaluation of Smart Grid solutions performance on demonstrators

 simulation of several scenarios in order to extract more information about the performance (sensitivities, high/low penetration of DG, etc...)

The evaluation of multiple KPIs (in addition to HC increase) allows the extraction of relevant information

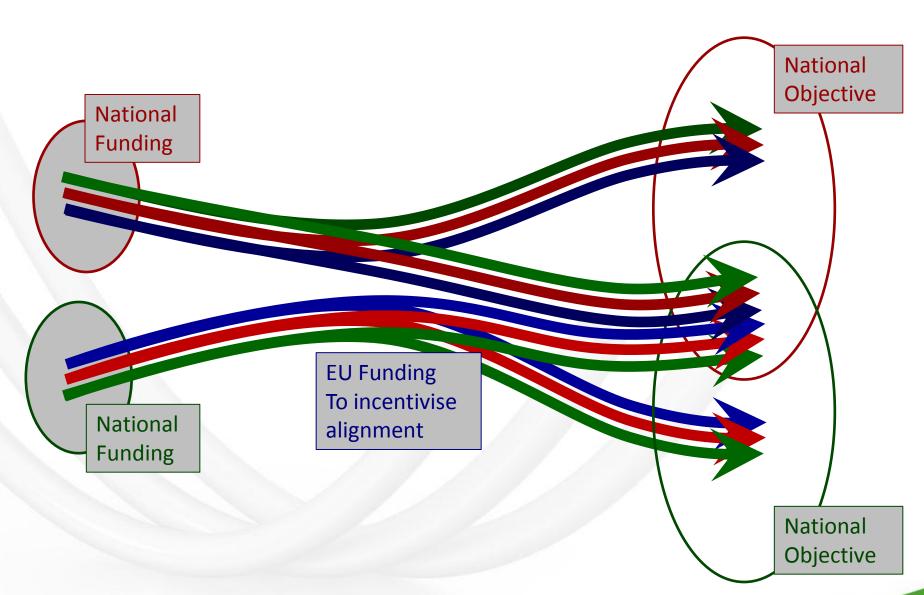
- effectiveness in case of voltage congestion
- impact of the solutions on different aspects of the network operation

...however...

The assumed hypotheses for an harmonized KPI calculation procedure are not accurate representations of the real operation practices

- voltage limits / maximum loading of lines
- safety reserves for robust network management

Resulting KPIs are strongly dependent on the network nature (rural/urban/etc.) and it is not possible to perform comparison of solutions on the basis of their results


- demonstrators networks have different characteristics
- KPIs should be investigated on clustered networks

Conclusion and future activity

- «Smart grid» is the .. label for the ongoing update process of distribution networks
- Smart grids are 'technical enablers', so it is not always possible to get simultaneously all the goals (eg. increase hosting capacity and decrease losses)
- Composing opposite needs
- Impacts of new market rules; increased complexity of information exchange between several actors
- Some difficulties to understand the potential scalability/replicability of the solution
- Role of customers

R&D activities on «smart grids»

Duration (month/year-month/year)	January 2016 – December 2018
Total budget and amount from EU/national funding scheme (specify type – eg. FP7/H2020 country and the organisations)	12.6 M€ (H2020 – Call: LCE6-2015)
Coordinator and partners (acronyms)	Project Coordinator: RSE (IT)
	Other partners: AIT, Danske Commodities, DTU, ENDESA, Energinet.dk, Eurisco, European University Institute, NOVASOL, N-SIDE, NYFORS , SELNET,
	SELTA/Edyna, SIEMENS Italia, SINTEF ENERGI, STIFTELSEN SINTEF, TECNALIA, TERNA, University of Strathclyde, VITO, VTT, VODAFONE.
	Linked third party: KULeuven

TSO-DSO interaction to support RES integration in the power system

EERA JP Smart Grids

20+21 Research Organizations (106 + 44 py/y)

17+1 European Countries

JP sub-programmes:

SP1 Network Operation

SP2 Power System Management

SP3 ICT & Control System Interoperability

SP4 Electrical Storage Integration

SP5 Transmission Networks

Cyprus

Int. Smart Grid Action Network

- ISGAN is the short name for the International Energy Agency (IEA) Implementing Agreement for a Co-operative Programme on Smart Grids.
- ISGAN was launched at the 1st Clean Energy Ministerial (CEM), a meeting of energy and environment ministers from 23 countries and the EU.
- The Ministerial was an outgrowth of the the **Major Economies Forum** on Energy and Climate (MEF) in L'Aquila, July 2009, where countries agreed to collaborate on advancing clean energy technologies.
- ISGAN aims at accelerating progress on key aspects of smart grid policy, technology, and related standards through voluntary participation by governments in specific projects and programs.
- ISGAN will facilitate dynamic knowledge sharing, technical assistance, peer review and, where appropriate, project coordination among participants.

Questions?

contacts

RSE Ricerca sul Sistema Energetico SpA

www.rse-web.it

Diana Moneta

Energy Systems development dept.

Diana.moneta@rse-web.it